成绩:_______
直接数字频率合成器的设计与分析
 
学院:电子与信息工程学院
专业:电子信息科学与技术
班级:09级电信本二班
姓名:余金雷
学号:90515032
指导老师:过老师
时间:20111213
1.摘要
随着数字信号处理和集成电路技术的发展,直接数字频率合成(DDS)的应用也越来越广泛。DDS具有相位和频率分辨率高、稳定度好、频率转换时间短、输出相位连续、可以实现多种数字与模拟调制的优点,而可编程门阵列(FPGA)具有集成度高、通用性好、设计灵活、编程方便、可以实现芯片的动态重构等特点,因此可以快速地完成复杂的数字系统。由于模拟调相方法有生产性差、调试不方便、调制度控制不精确等缺点,因此采用数字方法实现各种模拟调制也越来越普遍[5]。现在许多DDS输入姓名查询成绩在线芯片都直接提供了实现多种数字调制的功能,实现起来比较简单,而要实现模拟线性调制具有一定的难度。因此本设计介绍了一种由单片机控制,并采用FPGA实现DDS功能,产生频率和相位可调的正弦波信号的方法。
与传统的频率合成方法相比,DDS合成信号具有频率切换时间短、频率分辨率高、相位变化连续等诸多优点。使用单片机灵活的控制能力与FPGA器件的高性能、高集成度相结合,可以克服传统DDS设计中的不足,从而设计开发出性能优良的DDS系统。
直接数字频率合成(Digital Frequency Synthesis)是一种新的频率合成方法。随着数字集成电路和微电子技术的发展,DDS技术日益显示出他的优越性。直接数字频率合成器是一种全数字化的频率合成器。它由相位累加器、波形存储器、数模转化器和低通滤波器组成。DDS具有频率分辨率高、频率切换速度快、频率切换是相位变化连续等优点。
本文首先对DDS的原理进行了详细讨论,然后结合现场可编程门阵列器件(FPGA),设计实现了基于FPGADDS正弦信号的实现。本设计采用了用VHDL硬件描述语言和maxplus的顶层原理图等多种方式来实现,并经实践证明是可行的
关键字  EDA技术  VHDL硬件描述语言    直接数字频率合成器
软件平台MAX+PLUS 
前言
  EDA技术是现代电子信息工程领域的一门新技术 ,它是以大规模可编程逻辑器件为设计载体,一硬件描述语言为系统逻辑描述的主要表达方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件方式设计的电子系统到硬件系统的逻辑编译、逻辑简化、逻辑分割、逻辑综合及优化、逻辑局部布线、逻辑仿真,直至对于待定目标芯片的适配编译、逻辑放映、编程下载等工作,最终形成集成电子系统或专用集成芯片的一门新技术。它具有用软件方式设计硬件,用软件方式设计的系统到硬件系统的转换是由有关开发软件自动完成的,设计过程中用有关软件进行仿真,系统可现场编程、在线升级,整个系统可集成在一个芯片上,体积小、功耗低、可靠性高的特点。其主要主要内容:①大规模可编程逻辑器件 ②硬件描述语VHDL ③软件开发工具④实验开发系统。它是在先进的计算机工作平台上开发出来的一整套电子系统设计的软硬件工具并提供了先进的电子系统设计方法。当今的EDA技术更多的是指芯片内的电子系统设计自动化 ,即片上系统( SOC)设计。也就是说 ,开发人员完全可以通过自己的电子系统设计来制定其芯片内部的电路功能 ,使之成为设计者自己的专用集成电路 (ASIC)芯片 ,可以将设计过程中的许多细节问题抛开 ,而将注意力集中在系统的总体开发上 ,实现了真正意义上的电子设计自动化。
随着数字信号处理和集成电路技术的发展,直接数字频率合成(DDS)的应用也越来越广泛。
DDS具有相位和频率分辨率高、稳定度好、频率转换时间短、输出相位连续、可以实现多种数字与模拟调制的优点,而可编程门阵列(FPGA)具有集成度高、通用性好、设计灵活、编程方便、可以实现芯片的动态重构等特点,因此可以快速地完成复杂的数字系统。由于模拟调相方法有生产性差、调试不方便、调制度控制不精确等缺点,因此采用数字方法实现各种模拟调制也越来越普遍[5]。现在许多DDS芯片都直接提供了实现多种数字调制的功能,实现起来比较简单,而要实现模拟线性调制具有一定的难度。因此本设计介绍了一种由单片机控制,并采用FPGA实现DDS功能,产生频率和相位可调的正弦波信号的方法。
DDS技术具有频率切换时间短(20 ns),频率分辨率高(0.01 Hz),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点,它以有别于其他频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。DDS广泛用于接受机本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合跳频无线通信系统利用EDA技术中VHDL硬件描述语言,直接数字频率合成器描述,并在Altera公司开发的EDA软件平台MAX+PLUSⅡ环境下,VHDL源程序进行编辑、编译、仿真。 
2设计基本要求
1971年,美国学者J.TierncyC.M.ReaderB.Gold提出了以全数字技术从相位概念出发直接合成所需波形的一种新的频率合成原理。随着技术和水平的提高,一种新的频率合成技术——直接数字频率合成(DDSDirect Digtal Synthesis)技术得到了飞速发展。DDS技术是一种把一系列数字形式的信号通过DAC转换成模拟形式的信号合成技术,目前使用最广泛的一种DDS方式是利用高速存储器作查表,然后通过高速DAC输出已经用数字形式存入的正弦波。DDS技术具有频率切换时间短(20 ns),频率分辨率高(0.01 Hz),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点,它以有别于其他频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。DDS广泛用于接受机本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合跳频无线通信系统。
信号发生器由单片机、接口电路、FPGA、低通滤波器、D/A转换等部分组成其组成框图如图2.1所示。通过键盘送人频率控制字、相位控制字和幅值控制字,使其输出一定频率、相位和幅值的正弦波信号,经过低通滤波器后形成平滑的正弦波。
2.1  信号发生器的组成框图
系统的性能要求:
1、频率范围20Hz20KHZ,步进20Hz
2、差0°~359°,步进1°;
3、两路输出正弦波信号,峰峰值分别在0.3V5V变化;
4、数字显示频率、相位差。
3.设计分析
3.1DDS的工作原理:
下图是DDS的基本原理图,频率控制字M和相位控制字分别控制DDS输出正()弦波的频率和相位。DDS系统的核心是相位累加器,它由一个累加器和一个N位相位寄存器组成。每来一个时钟脉冲,相位寄存器以步长M增加。
3.1
相位累加器由N位加法器与N位累加寄存器级联构成其原理框图如图3.1所示。每来一个时钟脉冲FcN位加法器将频率控制数据K与累加寄存器输出的累加相位数据相加,把相加后的结果Y送至累加寄存器的输入端。累加寄存器一方面将在上一时钟周期作用后所产生的新
的相位数据反馈到加法器的输入端,以使加法器在下一时钟的作用下继续与频率控制数据K相加;另一方面以相加后的结果形成正弦查询表的地址,取出表中与该相位对应的单元中的幅度量化正弦函数值,作为取样地址值送入幅度/相位转换电路(即图2.1中的波形存储器)。这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。
相位累加器原理框图
由此可以看出,相位累加器在每一个时钟脉冲输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位。当相位累加器加满量时就会产生一次溢出,溢出频率就是DDS输出的信号频率。
相位累加器的最大计数长度与正弦查询表中所存储的相位分隔点数相同,在取样频率(由参考时钟频率决定)不变的情况下,由于相位累加器的相位增量不同,将导致一周期内的取样点数不同,输出信号的频率也相应变化。如果设定累加器的初始相位,则可以对输出信号进行相位控制。由采样原理可知,如果使用两个相同的频率合成器,并使其参考时钟相同,同时设定相同的频率控制字、不同的初始相位,那么在原理上就可以实现输出两路具有一定相位差的同频信号。