中央空调水蓄系统的原理图
 
一、水蓄冷系统的原理
1、空调谁蓄冷的构成和原理流程图
水蓄冷的主要组成部分:制冷机组、蓄冷水池(蓄冷罐)、板式换热器、供冷水泵、蓄冷水泵、放冷水泵、冷却塔和冷却水泵。与常规制冷系统相比,水蓄冷系统比常规系统多蓄冷水池(蓄冷罐)、板式换热器、蓄冷水泵和放冷水泵等设备。
2、大温差水蓄冷典型系统的原理
系统的基本组成如图所示(可以部分地下或者全地下结构).调投入运转时,阀K热K冷开启,K旁关闭。供冷泵的启停及其出口阀开度由楼宇的需冷量而定,冷水机和充冷泵的开停则由电价的时段划分而定,二者互不干扰.
2.1、充冷工况:电力低价时段,冷水机满载运转,其输出水量G1大於楼宇所需的冷冻水量G2,
余量G3=G1-G2自贮柜“冷端”输入经均流布水环槽注入贮柜底部.柜内冷冻水与回水的交界面上升,升达上布水环槽上缘,充冷过程终结。
2。2、放冷工况:楼宇所需冷冻水量G2大於冷水机出水量G1时,G3=G1—G2<0,自贮柜底部输出的冷冻水经供冷泵馈至楼宇,在换热升温后经K返回贮柜上布水环槽。贮柜内,冷冻水与回水的界面下降。
3、水蓄冷空调的适用场合
水蓄冷空调由于在夜间需要开动制冷机组进行蓄冷,因此它最适合在夜间没有供冷要求或仅需部分供冷的场所.适合采用水蓄冷技术的具体场合与冰蓄冷空调相同。
与冰蓄冷技术相比,水蓄冷技术显著节省了投资总额,而且不但适用于新建项目,也适合应用于改造项目。对原有系统在无需进行任何改动的情况下,只需在原系统中添加水蓄冷设备所需的管路即可,对原有系统没有任何影响。
4、如何选择水蓄冷或冰蓄冷方式改造?
随着现代工业的发展和人民生活水平的提高.中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。
4.1、冰蓄冷
顾名思义蓄冷介质以冰为主,不同的制冰式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷.因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况,
4.1.1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为
Qc=Q/(N1+Cf*注册消防工程师彻底凉了N2
Qs= N2 Cf *Qc,
式中    Q:以空调工况为基点时的制冷机制冷量(kw
Qs:蓄冰槽容量KWH
N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)N
N2:夜间制冷主机在蓄冷工况下的运行小时数.
Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0。65,螺杆式冷水机组约为0.70.它取决于工况的温度条件和机组型号。
  根据这个公式,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。
4.1。2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。
4.2、水蓄冷
水蓄冷是利用3—7的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要.
4.3、冰蓄冷系统和蓄冷系统经济比较分析
某高层建筑总建筑面积15000m2,空调面积12000m2,建筑物总高度54M为高一类工程。其功能主要以办公为主,空调运行时间为8:00-18:00,消防水池的有效容积为600m3.设计日全日最高负荷为:1232KW;设计日全日总冷量9854kwH,
4。3。1、水蓄冷系统:
因为常规顿汉布什螺杆机低温保护温度为4,我们设定水池取冷温度为5.5,回水温度12,则总蓄冷量为4524KW,考虑到冷量损失,我们确定实际能够利用的冷量为4060KW,其负担的空调面积数为5000M2,制冷主机的容量为6844KW,蓄冷量占总冷量的比率为场4060/9854=41%,我们选用696KW立式螺杆机组一台,满足夜间蓄冷池的蓄冷要求。
因水池供冷为开式系统,为节省空调系统的运行费用,应最大限度地降低蓄冷池供冷泵的扬程,我们在进行系统设计时,将整幢主楼分成高、低两个区,低区空调面积5000m2,采用蓄冷池供冷,为开式系统,高区空调面积7000m2,采用制冷机组供冷,为闭式系统.
4。3.2、冰蓄冷系统
  我们采用部分蓄冷方式,根据公式Qc=Q/(N1+CfN2)得出Qc=9854/(8.5+0.7×8)=700kw蓄冰槽容量: Qs=N2Cf*Qc=8×0.7×200=3920KwH根据上式我们选用一台700KW双工况水冷螺杆机组,蓄冰槽的蓄冷量为3920kwH。
  其冷冻站配置及概算如下:
以上分析比较来看,水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷
他们各用各自的适用范围,下面我们来分析一下:
  根据公式Qc=Q/(N1+CfN2) Qs=N2Cf*Qc 我们可得出蓄冷比率:η=Qs/Q=(N2Cf*Qc)/Q=(N2*Cf*Qc)/[(N1+CfN2)×(N2*Cf*Qc)/Q]=1/[1+(N1/(CfN2))
  对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0。7,则η=1(1+8.5/0.7×8)=39。7%
在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,
但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系
那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率39.7%,则我们建议采用冰蓄冷系统,对空调面积较的建筑物来说,水池所蓄存的冷量
占全日总冷量的比率39.7%则我们应采用水蓄冷系统,同时应与水系统的分区结合起来。
二、水蓄冷简介
空调蓄能技术是一种最有效地获取分时电价差效益、节省电制冷或电制热运行电费的技术。在国外已经是一项成熟的技术,目前国内正在大面积推广应用。由佩尔优公司首任蓄冷总工程师徐威先生主持研究开发、具有自主知识产权的“大温差水蓄冷中央空调水蓄冷系统"是目前世界上最先进的水蓄冷系统,其所有指标都超过了美国、日本等发达国家类似系统的技术水平.目前我国大温差水蓄冷中央空调蓄冷系统都是采用佩尔优的发明专利(专利号:ZL97116453.3)技术实现的,其中多数项目是由佩尔优以合同能源管理的商业模式建设而成。
  水蓄冷中央空调系统是将冷量以显热或潜热的形式储存在某种介质中,并在需要时能够从储存冷量的介质中释放出冷量的空调系统。水蓄冷是空调蓄冷的重要方式之一,利用水的显热储存冷量。水蓄冷中央空调系统是用水为介质,将夜间电网多余的谷段电力(低电价时)与水的显热相结合来蓄冷,以低温冷冻水形式储存冷量,并在用电高峰时段(高电价时)使用储存的低温冷冻水来作为冷源的空调系统。
三、实施水蓄冷的基本条件
1、有可执行峰谷电价的供电政策或有对蓄能优惠的电价政策。
2、以冷冻水为冷源的电制冷空调系统,低电价时段有空余的制冷机组作蓄冷用.
3、建筑物中具有可利用的消防水池或可建蓄水池的空间(绿地、露天停车地下,空闲地或可作水池的地下室等)。
四、水蓄冷技术特点
1、获取分时供电政策的电价差,“高抛低吸”,大量节省运行电费;
2、节约电能;
A、年总的开机台时数少于常规系统;
B、当夜间蓄冷时,气温降低,冷却效果提高,机组处于高效运转,效率可提高6-8%,空调系统总的节电率不低于10%。
3、由于夜间已蓄冷,白天在突然停电时,只需较少的动力驱动水泵和末端空调马达,即可维持空调系统供冷。
4、提高了空调的品质,即需即供,供冷速度快.可按需调节供冷量,对供冷量的调节快捷而方便,系统运行稳定、安全。
5、适用于空调系统的扩容改造,可不增加制冷机组容量而达到增加供冷量的目的,只需在原系统中添加水蓄冷设备和所需的管路即可,对原有系统没有任何影响。
6、对于新装系统,可以减少装机容量,节约机组和配电设施的投资.
7、可利用消防水池以及现有的蓄水设施或建筑物地下室等作为蓄冷池.
8、蓄冷池可实现蓄热和蓄冷双重用途。
9、与常规空调一样,操作和维修方便,操作人员无需专门技术培训。
五、空调蓄冷是社会发展的必然趋势?
1、分时电价对空调耗电的影响
  目前,除西藏等个别地区外,我国基本实行了分时电价。如上海地区峰谷比例为4.6:1,
其高峰、平段、低谷的电价分别为1.017元/kwh、0。646元/kwh、0.222元/kwh,其峰谷电价差为0.795元/kwh;
    显然,在电力低谷0.222元/kwh时期,开制冷机并蓄存冷量,在电力高峰1。017元/kwh时,不开或少开制冷机,用低谷蓄存的冷量满足供冷要求,可以节省大量的空调电费。与常规空调系统相比,节省空调电费的比例约30-70%.
2、水蓄冷空调的社会和经济价值
空调用电负荷日益加大并与电网用电高峰重叠,是导致我国夏天用电高峰缺电及电网运行不经济的重要原因.
  如09年,上海电力高峰负荷2400万KW,低谷负荷1550万kw,每天有850万kw低谷负荷被“浪费”,同时,电网负荷的剧烈波动,导致发、供、用的整体电力系统效率下降。而空调负荷是其中主要原因;利用空调水蓄冷,可把高峰电力负荷转移至低谷,对节约建设高峰电站以及配套的电网变电设备投资具有显著的社会价值及经济价值。